bauraBAL 2

Created Diff never expires
4 removals
651 lines
4 additions
652 lines
/**
*Submitted for verification at Etherscan.io on 2022-08-05
*/

// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT


pragma solidity 0.6.12;
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
pragma experimental ABIEncoderV2;


/**
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
*/
interface IERC20Upgradeable {
interface IERC20Upgradeable {
/**
/**
* @dev Returns the amount of tokens in existence.
* @dev Returns the amount of tokens in existence.
*/
*/
function totalSupply() external view returns (uint256);
function totalSupply() external view returns (uint256);


/**
/**
* @dev Returns the amount of tokens owned by `account`.
* @dev Returns the amount of tokens owned by `account`.
*/
*/
function balanceOf(address account) external view returns (uint256);
function balanceOf(address account) external view returns (uint256);


/**
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
*
* Returns a boolean value indicating whether the operation succeeded.
* Returns a boolean value indicating whether the operation succeeded.
*
*
* Emits a {Transfer} event.
* Emits a {Transfer} event.
*/
*/
function transfer(address recipient, uint256 amount) external returns (bool);
function transfer(address recipient, uint256 amount) external returns (bool);


/**
/**
* @dev Returns the remaining number of tokens that `spender` will be
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
* zero by default.
*
*
* This value changes when {approve} or {transferFrom} are called.
* This value changes when {approve} or {transferFrom} are called.
*/
*/
function allowance(address owner, address spender) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);


/**
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
*
* Returns a boolean value indicating whether the operation succeeded.
* Returns a boolean value indicating whether the operation succeeded.
*
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
*
* Emits an {Approval} event.
* Emits an {Approval} event.
*/
*/
function approve(address spender, uint256 amount) external returns (bool);
function approve(address spender, uint256 amount) external returns (bool);


/**
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
* allowance.
*
*
* Returns a boolean value indicating whether the operation succeeded.
* Returns a boolean value indicating whether the operation succeeded.
*
*
* Emits a {Transfer} event.
* Emits a {Transfer} event.
*/
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);


/**
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
* another (`to`).
*
*
* Note that `value` may be zero.
* Note that `value` may be zero.
*/
*/
event Transfer(address indexed from, address indexed to, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);


/**
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
* a call to {approve}. `value` is the new allowance.
*/
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
}


/**
/**
* @dev Standard math utilities missing in the Solidity language.
* @dev Standard math utilities missing in the Solidity language.
*/
*/
library MathUpgradeable {
library MathUpgradeable {
/**
/**
* @dev Returns the largest of two numbers.
* @dev Returns the largest of two numbers.
*/
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
return a >= b ? a : b;
}
}


/**
/**
* @dev Returns the smallest of two numbers.
* @dev Returns the smallest of two numbers.
*/
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
return a < b ? a : b;
}
}


/**
/**
* @dev Returns the average of two numbers. The result is rounded towards
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
* zero.
*/
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
}
}


/**
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
* checks.
*
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
* operation overflows.
*
*
* Using this library instead of the unchecked operations eliminates an entire
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
* class of bugs, so it's recommended to use it always.
*/
*/
library SafeMathUpgradeable {
library SafeMathUpgradeable {
/**
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
*
* _Available since v3.4._
* _Available since v3.4._
*/
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
uint256 c = a + b;
if (c < a) return (false, 0);
if (c < a) return (false, 0);
return (true, c);
return (true, c);
}
}


/**
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
*
* _Available since v3.4._
* _Available since v3.4._
*/
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
if (b > a) return (false, 0);
return (true, a - b);
return (true, a - b);
}
}


/**
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
*
* _Available since v3.4._
* _Available since v3.4._
*/
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
if (a == 0) return (true, 0);
uint256 c = a * b;
uint256 c = a * b;
if (c / a != b) return (false, 0);
if (c / a != b) return (false, 0);
return (true, c);
return (true, c);
}
}


/**
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
*
* _Available since v3.4._
* _Available since v3.4._
*/
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
if (b == 0) return (false, 0);
return (true, a / b);
return (true, a / b);
}
}


/**
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
*
* _Available since v3.4._
* _Available since v3.4._
*/
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
if (b == 0) return (false, 0);
return (true, a % b);
return (true, a % b);
}
}


/**
/**
* @dev Returns the addition of two unsigned integers, reverting on
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
* overflow.
*
*
* Counterpart to Solidity's `+` operator.
* Counterpart to Solidity's `+` operator.
*
*
* Requirements:
* Requirements:
*
*
* - Addition cannot overflow.
* - Addition cannot overflow.
*/
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
require(c >= a, "SafeMath: addition overflow");
return c;
return c;
}
}


/**
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
* overflow (when the result is negative).
*
*
* Counterpart to Solidity's `-` operator.
* Counterpart to Solidity's `-` operator.
*
*
* Requirements:
* Requirements:
*
*
* - Subtraction cannot overflow.
* - Subtraction cannot overflow.
*/
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
return a - b;
}
}


/**
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
* overflow.
*
*
* Counterpart to Solidity's `*` operator.
* Counterpart to Solidity's `*` operator.
*
*
* Requirements:
* Requirements:
*
*
* - Multiplication cannot overflow.
* - Multiplication cannot overflow.
*/
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
if (a == 0) return 0;
uint256 c = a * b;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
require(c / a == b, "SafeMath: multiplication overflow");
return c;
return c;
}
}


/**
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
* division by zero. The result is rounded towards zero.
*
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
* uses an invalid opcode to revert (consuming all remaining gas).
*
*
* Requirements:
* Requirements:
*
*
* - The divisor cannot be zero.
* - The divisor cannot be zero.
*/
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
require(b > 0, "SafeMath: division by zero");
return a / b;
return a / b;
}
}


/**
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
* reverting when dividing by zero.
*
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
* invalid opcode to revert (consuming all remaining gas).
*
*
* Requirements:
* Requirements:
*
*
* - The divisor cannot be zero.
* - The divisor cannot be zero.
*/
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
require(b > 0, "SafeMath: modulo by zero");
return a % b;
return a % b;
}
}


/**
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
* overflow (when the result is negative).
*
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
* message unnecessarily. For custom revert reasons use {trySub}.
*
*
* Counterpart to Solidity's `-` operator.
* Counterpart to Solidity's `-` operator.
*
*
* Requirements:
* Requirements:
*
*
* - Subtraction cannot overflow.
* - Subtraction cannot overflow.
*/
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
require(b <= a, errorMessage);
return a - b;
return a - b;
}
}


/**
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
* division by zero. The result is rounded towards zero.
*
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
* uses an invalid opcode to revert (consuming all remaining gas).
*
*
* Requirements:
* Requirements:
*
*
* - The divisor cannot be zero.
* - The divisor cannot be zero.
*/
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
require(b > 0, errorMessage);
return a / b;
return a / b;
}
}


/**
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
* reverting with custom message when dividing by zero.
*
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
* message unnecessarily. For custom revert reasons use {tryMod}.
*
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
* invalid opcode to revert (consuming all remaining gas).
*
*
* Requirements:
* Requirements:
*
*
* - The divisor cannot be zero.
* - The divisor cannot be zero.
*/
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
require(b > 0, errorMessage);
return a % b;
return a % b;
}
}
}
}


/**
/**
* @dev Collection of functions related to the address type
* @dev Collection of functions related to the address type
*/
*/
library AddressUpgradeable {
library AddressUpgradeable {
/**
/**
* @dev Returns true if `account` is a contract.
* @dev Returns true if `account` is a contract.
*
*
* [IMPORTANT]
* [IMPORTANT]
* ====
* ====
* It is unsafe to assume that an address for which this function returns
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
* false is an externally-owned account (EOA) and not a contract.
*
*
* Among others, `isContract` will return false for the following
* Among others, `isContract` will return false for the following
* types of addresses:
* types of addresses:
*
*
* - an externally-owned account
* - an externally-owned account
* - a contract in construction
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* - an address where a contract lived, but was destroyed
* ====
* ====
*/
*/
function isContract(address account) internal view returns (bool) {
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// construction, since the code is only stored at the end of the
// constructor execution.
// constructor execution.


uint256 size;
uint256 size;
// solhint-disable-next-line no-inline-assembly
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
assembly { size := extcodesize(account) }
return size > 0;
return size > 0;
}
}


/**
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
* `recipient`, forwarding all available gas and reverting on errors.
*
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
* `transfer`. {sendValue} removes this limitation.
*
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
*/
function sendValue(address payable recipient, uint256 amount) internal {
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
require(address(this).balance >= amount, "Address: insufficient balance");


// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
require(success, "Address: unable to send value, recipient may have reverted");
}
}


/**
/**
* @dev Performs a Solidity function call using a low level `call`. A
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
* function instead.
*
*
* If `target` reverts with a revert reason, it is bubbled up by this
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
* function (like regular Solidity function calls).
*
*
* Returns the raw returned data. To convert to the expected return value,
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
*
* Requirements:
* Requirements:
*
*
* - `target` must be a contract.
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
* - calling `target` with `data` must not revert.
*
*
* _Available since v3.1._
* _Available since v3.1._
*/
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
return functionCall(target, data, "Address: low-level call failed");
}
}


/**
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
* `errorMessage` as a fallback revert reason when `target` reverts.
*
*
* _Available since v3.1._
* _Available since v3.1._
*/
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
return functionCallWithValue(target, data, 0, errorMessage);
}
}


/**
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
* but also transferring `value` wei to `target`.
*
*
* Requirements:
* Requirements:
*
*
* - the calling contract must have an ETH balance of at least `value`.
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
* - the called Solidity function must be `payable`.
*
*
* _Available since v3.1._
* _Available since v3.1._
*/
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
}


/**
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
*
* _Available since v3.1._
* _Available since v3.1._
*/
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
require(isContract(target), "Address: call to non-contract");


// solhint-disable-next-line avoid-low-level-calls
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
return _verifyCallResult(success, returndata, errorMessage);
}
}


/**
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
* but performing a static call.
*
*
* _Available since v3.3._
* _Available since v3.3._
*/
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
return functionStaticCall(target, data, "Address: low-level static call failed");
}
}


/**
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
* but performing a static call.
*
*
* _Available since v3.3._
* _Available since v3.3._
*/
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
require(isContract(target), "Address: static call to non-contract");


// solhint-disable-next-line avoid-low-level-calls
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
return _verifyCallResult(success, returndata, errorMessage);
}
}


function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
if (success) {
return returndata;
return returndata;
} else {
} else {
// Look for revert reason and bubble it up if present
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// The easiest way to bubble the revert reason is using memory via assembly


// solhint-disable-next-line no-inline-assembly
// solhint-disable-next-line no-inline-assembly
assembly {
assembly {
let returndata_size := mload(returndata)
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
revert(add(32, returndata), returndata_size)
}
}
} else {
} else {
revert(errorMessage);
revert(errorMessage);
}
}
}
}
}
}
}
}


/**
/**
* @title SafeERC20
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
*/
library SafeERC20Upgradeable {
library SafeERC20Upgradeable {
using SafeMathUpgradeable for uint256;
using SafeMathUpgradeable for uint256;
using AddressUpgradeable for address;
using AddressUpgradeable for address;


function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
}


function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
}


/**
/**
* @dev Deprecated. This function has issues similar to the ones found in
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
* {IERC20-approve}, and its usage is discouraged.
*
*
* Whenever possible, use {safeIncreaseAllowance} and
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
* {safeDecreaseAllowance} instead.
*/
*/
function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
"SafeERC20: approve from non-zero to non-zero allowance"
);
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
}


function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}


function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}


/**
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
* @param data The call data (encoded using abi.encode or one of its variants).
*/
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
// the target address contains contract code and also asserts for success in the low-level call.


bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
}
}
}


// solhint-disable-next-line compiler-version
// solhint-disable-next-line compiler-version


/**
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
*/
abstract contract Initializable {
abstract contract Initializable {


/**
/**
* @dev Indicates that the contract has been initialized.
* @dev Indicates that the contract has been initialized.
*/
*/
bool private _initialized;
bool private _initialized;


/**
/**
* @dev Indicates that the contract is in the process of being initialized.
* @dev Indicates that the contract is in the process of being initialized.
*/
*/
bool private _initializing;
bool private _initializing;


/**
/**
* @dev Modifier to protect an initializer function from being invoked twice.
* @dev Modifier to protect an initializer function from being invoked twice.
*/
*/
modifier initializer() {
modifier initializer() {
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");


bool isTopLevelCall = !_initializing;
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
if (isTopLevelCall) {
_initializing = true;
_initializing = true;
_initialized = true;
_initialized = true;
}
}


_;
_;


if (isTopLevelCall) {
if (isTopLevelCall) {
_initializing = false;
_initializing = false;
}
}
}
}


/// @dev Returns true if and only if the function is running in the constructor
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
function _isConstructor() private view returns (bool) {
return !AddressUpgradeable.isContract(address(this));
return !AddressUpgradeable.isContract(address(this));
}
}
}
}


/*
/*
* @dev Provides information about the current execution context, including the
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* paying for execution may not be the actual sender (as far as an application
* is concerned).
* is concerned).
*
*
* This contract is only required for intermediate, library-like contracts.
* This contract is only required for intermediate, library-like contracts.
*/
*/
abstract contract ContextUpgradeable is Initializable {
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal initializer {
function __Context_init() internal initializer {
__Context_init_unchained();
__Context_init_unchained();
}
}


function __Context_init_unchained() internal initializer {
function __Context_init_unchained() internal initializer {
}
}
function _msgSender() internal view virtual returns (address payable) {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
return msg.sender;
}
}


function _msgData() internal view virtual returns (bytes memory) {
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
return msg.data;
}
}
uint256[50] private __gap;
uint256[50] private __gap;
}
}


/**
/**
* @dev Contract module which allows children to implement an emergency stop
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
* mechanism that can be triggered by an authorized account.
*
*
* This module is used through inheritance. It will make available the
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
* simply including this module, only once the modifiers are put in place.
*/
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/**
/**
* @dev Emitted when the pause is triggered by `account`.
* @dev Emitted when the pause is triggered by `account`.
*/
*/
event Paused(address account);
event Paused(address account);


/**
/**
* @dev Emitted when the pause is lifted by `account`.
* @dev Emitted when the pause is lifted by `account`.
*/
*/
event Unpaused(address account);
event Unpaused(address account);


bool private _paused;

/**
* @dev Initializes the contrac